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LIDG method
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L. M. Ghiringhelli, et al., PRL 114, 105503 (2015)
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Our approach

L. M. Ghiringhelli, et al., PRL 114, 105503 (2015)

Sample space setting

Calculation of 

Prep. basic descriptors
( ) = [ , , , … , ]

Descriptor generation
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Linearly independent 
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MP solver
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Linearly independent descriptor generation method
Sample space setting

Calculation of 

Prep. basic descriptors
( ) = [ , , , … , ]
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Y. Kanda, H. Fujii, and T. Oguchi, STAM 20, 1178 (2019).
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Experiment

H. Saito: Physics and Applications of Invar Alloys, 
Maruzen, Tokyo, (1978), 18. 

Example

AkaiKKR (KKR-CPA)
LDA (MJW)
Crystal structure: BCC 
Lattice constant = 2.86 
Scalar relativistic
BZ quality = 10 (nk=256) 
edelta = 0.0001
ewidth = 1.2
Complex energy mesh = 85
L max = 3 

Everyone may image that there is a simple model on the back of this curve  
We try to find the simple model by using LIDG method

Calculation

( , , )

Target property ( = ): 
Magnetic moment of binary alloy 

Initial descriptors ( = ): 
Concentration, 
Magnetic moment of pure bulk, ,
The number of valence electrons, , ( )
Magnetic moment of impurity atom, ,

,



Up to 2nd order (17)

1st order (8)

Up to 3rd order (24)
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The results of OLS with 1st, 2nd, and 3rd order descriptors



Averaged magnetic moment term
(linear to ) 

Mixing (excessive) magnetic moment term generated by alloying

Obtained model by backward selection

, , ~ +
+ ( ) . + . + . , + . + ,

, , = , , + , ,

, , +

, , ( ) ( , )

, = . + . + . , + . + ,

Interaction parameter (does not depend on )

An interpretation 
by analogy with the regular solution approximation for binary compound system



Summary

• We propose RREF method for detecting MCL

• The subspace list is useful for breaking the detected MCL relationships

• This is a new approach to solve MCL problem in linear regression analysis

• By combining these methods, LIDG method was proposed

• LIDG method was applied to analyze SPCs and we could obtain a simple 
(interpretable) model with high generalization capability.



Use of symmetry in target property

( , , ) = ( , , )

( , , , ) = ( , , , )
, , , : identifiers (primary key)

(not descriptor)

Magnetic moment of alloys expected to have a symmetry like,

, , , = , , ,
( , , , ) = ( , , , ) = , , ,

Symmetrization operator (projection operator):

= +

1. we can increase samples which are symmetrically equivalent.
2. we can construct descriptors to satisfy the above regulations in advance 

If we can find symmetries,



Symmetrization of descriptors

= +

Symmetrization operator:

= +

= +

, = , + ,

= +
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, = , + ,

= +

If we use these symmetrical descriptors,
we can get a more reasonable model. 



The number of multicollinearities

The number of non-trivial solutions of =
means the number of extra basis in span 

( )

( ) = ( )

Linear span:

= ({ , , , … , })

Design matrix:

= , , , … ,

then, the number of non-trivial (independent) solutions is given by 

independent one set of solution



RREF method

=

=

Make row reduced echelon form (rref) of by basic operations.

( × ):  row basic transformation operator (regular)

( × ):  column basic transformation operator (regular and orthogonal) 
(here suppose that it just change the order of columns)

The simplest solutions: 
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The solutions of = are the solutions of = ?

RREF method
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How to obtain We only have to remember the order change



Raw data



Descriptors
MP: Magnetic moment of pure bulk A
Z: # of valence electrons

MI(A,B): 
Magnetic moment of impurity A (B)
in bulk B (A)
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L K XAS XPS

RIXS-MCD XAS Co K
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